A. 宇宙仙女座星系

仙女星系
andromeda galaxy

本星系群中的重要成员,又叫M31。

仙女座星系,位于仙女星座的一个巨型旋涡星系,视星等为3.5等,肉眼可见。是我们银河系的近邻。视星等为3.5等。肉眼可以见到它,状如暗弱的椭圆小光斑。很早以前天文学家就发现了它,梅西叶在1764年8月3日为它编号。

仙女座星系是距离我们银河系最近的大星系。一般认为银河系的外观与仙女座大星系十分很像,两者共同主宰着本星系群。仙女座大星系弥漫的光线是由数千亿颗恒星成员共同贡献而成的。几颗围绕在仙女座大星系影像旁的亮星,其实是我们银河系里的星星,比起背景物体要近得多了。仙女座大星系又名为M31,因为它是著名的梅西耶星团星云表中的第31号弥漫天体。M31的距离相当远,从它那儿发出的光需要200万年的时间才能到达地球。星云中的恒星可以划分成约20个群落,这意味着它们可能来自仙女座星系“吞噬”的较小星系,

在《梅西耶星表》中的编号是M31,在《星云星团新总表》中的编辑是NGC224,习惯称为仙女座大星云。

仙女座星系的直径是50千秒差距(16万光年),为银河系直径的一倍,是本星系群中最大的一个星系,距离我们大约220万光年。仙女座星系和银河系有很多的相似,对二者的对比研究,能为了解银河系的运动、结构和演化提供重要的线索。

1786年,F.W.赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出仙女座星系旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。1944年,巴德又分辨出仙女座星系核心部分的天体,证认出其中的星团和恒星。

M31在天文学史上有着重要的地位。1786年,赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出 M31旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。现代测定它的距离是 670千秒差距(220万光年)。直径是 50千秒差距(16万光年),为银河系的两倍,是本星系群中最大的一个。1944年,巴德又分辨出 M31核心部分的天体,证认出其中的星团和恒星,并指明星族的空间分布与银河系相。M31旋臂上是极端星族I,其中有O-B型星、亮超巨星、OB星协、电离氢区。在星系盘上观测到经典造父变星、新星、红巨星、行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。近年来还发现,M31成员的重元素含量,从外围向中心逐渐增加。这种现象表明,恒星抛射物质致使星际物质重元素增多的过程,在星系中心区域比外围部分频繁得多。1914年皮斯探知M31有自转运动。1939年以来历经巴布科克等人的研究,测出从中心到边缘的自转速度曲线,并由此得知星系的质量。据目前估计,M31的质量不小于 3.1×1011个太阳质量,比银河系大一倍以上,是本星系群中质量最大的一个。M31的中心有一个类星核心,直径只有25光年,质量相当于107太阳,即一立方秒差距内聚集1500个恒星。类星核心的红外辐射很强,约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出,中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%,这个比值较之银河系的(1.4~7%)要小。由此可以认为,M31的气体大部分已形成恒星。M31和银河系相似,对二者进行对比研究,就能为了解银河系的运动、结构和演化提供重要的线索。

由于人类身处银河系,无法观测到银河系的全貌,但天文学家想象银河系也是一个类似于仙女座星系的螺旋星系。仙女座星系、银河系和其他30多个星系共同组成一个更大的星系集团--本星系群(Local Group Galaxy Cluster)。

我们银河系和仙女座星系正在相互靠近对方,在大约30亿年后两者可能会碰撞,在融合过程中将会暂时形成一个明亮、结构复杂的混血星系。一系列恒星将被抛散,星系中大部分游离的气体也将会被压缩产生新的恒星。大约再过几十亿年后,星系的旋臂将会消失,两个螺旋星系将会融合成一个巨大的椭圆星系。

不过,两星系的碰撞、融合只发生在遥不可及的未来,人类大可不必为此“忧天”。

位于仙女星座的巨型旋涡星系 (M31)。1950.0历元的天球坐标是赤经0400﹐赤纬+41°00。视星等m 为3.5等。肉眼可见﹐状如暗弱的椭圆小光斑。在照片上呈现为倾角77°的Sb型星系(见星系的分类)﹐大小是160′×40′﹐从亮核伸展出两条细而紧的旋臂﹐范围可达245′×75′。在《梅西耶星表》中的编号是M31﹐《星云星团新总表》中的编号是NGC224﹐习称仙女座大星云﹐现称仙女星系。1786年﹐F.W.赫歇耳第一个将它列入能分解为恒星的星云。1924年﹐哈勃在照相底片上证认出 M31旋臂上的造父变星﹐并根据周光关系算出距离﹐确认它是银河系之外的恒星系统。现代测定它的距离是 670千秒差距(220万光年)。直径是 50千秒差距(16万光年)﹐为银河系的一倍﹐是本星系群中最大的一个。1944年﹐巴德又分辨出 M31核心部分的天体﹐证认出其中的星团和恒星﹐并指明星族的空间分布与银河系相似。M31旋臂上是极端星族I﹐其中有O-B型星(见恒星光谱分类)﹑亮超巨星﹑OB星协﹑电离氢区。在星系盘上观测到经典造父变星﹑新星﹑红巨星﹑行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。近年来还发现﹐M31成员的重元素含量﹐从外围向中心逐渐增加。这种现象表明﹐恒星抛射物质致使星际物质重元素增多的过程﹐在星系中心区域比外围部分频繁得多。1914年皮斯探知 M31有自转运动。1939年以来历经H.D.巴布科克等人的研究﹐测出从中心到边缘的自转速度曲线﹐并由此得知星系的质量。据目前估计﹐M31的质量不小于 3.1×10个太阳质量﹐比银河系大一倍以上﹐是本星系群中质量最大的一个。

M31的绝对星等M =-21.1﹐是本星系群中最亮的一个成员。从表面亮度分布可知﹐M31中心有一个类星核心﹐绝对星等M =-11﹐直径只有8秒差距(25光年)﹐质量相当于10个太阳﹐即一立方秒差距内聚集1﹐500个恒星。类星核心的红外辐射很强﹐约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出﹐中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%﹐这个比值较之银河系的(1.4~7%)要小。由此可以认为﹐M31的气体大部分已形成恒星。M31有两个矮伴星系──M32(NGC221)和NGC205﹐按形态分类分别为 E2和E5p。后者拥有大量的年轻蓝星﹐是个特殊的椭圆星系。在本星系群中﹐M31还和其他星系──NGC147﹑NGC185﹑M33(NGC598)以及AndΙ﹐AndⅡ﹐AndⅢ﹐AndⅣ──构成所谓仙女星系次群。

M31和银河系相似﹐对二者进行对比研究﹐就能为了解银河系的运动﹑结构和演化提供重要的线索.

B. 各位星座高手帮解星盘一下 谢谢

看你这类盘还挺麻烦的~网上有直接测星盘还有带解答的~下次你那样测,有什么不明白再上来提问.或者把出生日期和所在地写一下,这个分数相信会有很多人帮你测~放图上来有不好的一点是线没有标度数,看起来会有误差.好处是只有略微研究的才能看懂~但也不排除有瞎说的呵呵~如果放图上来最好有针对性的提问~比如想知道某一方面,这样能得到详细解答.如果都问那只能得到一个笼统答案~建议!看星座要先看太阳和月亮.你的太阳是处女8宫,月亮是射手11宫.太阳和月亮刚好在星座的第三个半球区域内~.另外其他星也比较集中在这个区域.巨蟹座、狮子座、处女座、天秤座、天蝎座和射手座等,是星座的第三个半球区域。如果大部份的行星是落在这个半球区域内,个性上会比较容易有企图、理想和客观的倾向.线太多O~看的眼睛都花了~想问哪方面的我看看能解不~金星在第7宫巨蟹座.金星掌管爱情哦~最重要的上升是魔羯~对星座有了解的人都知道上升星座即是你出生时东方地平线与黄道交界处升起的第一个星座。上升星座是我们的的外在表现,是外界所觉知到的你。因此由上升星座也可得知你表达自我的方式。通常一个人的太阳及上升星座都不会一样,而这就是我们之所以称上升星座为我们的“人格面具”。大部分时候,我们的太阳是隐藏在上升星座背後的上升星座主宰了一个人主要的个性特质、与生俱来的性格以及给人的第一印象。上升星座所透露的不只是我们言谈、行为的模式,我们的穿著、发型、外表等等皆受其影响。太阳是处女第8宫,月亮是射手第11宫,金星在第7宫巨蟹座,上升是魔羯这些解释在网上能搜到.就不多说了.

C. 电器触点材料是什么金属

纯金属材料等。

触头材料(contact material)是用于开关、继电器、电气连接及电气接插元件的电接触材料,又称电触头材料,一般分强电用触头材料和弱电用触头材料两种。

触头是开关电器中最薄弱的环节和容易出故障的部分:一旦触头系统不能正常工作,如电力系统发生短路寸,高压断路器触头拒绝断开,将引起极为严重的后果。

(3)梅西星盘扩展阅读:

物理性质

1、一般物理性质:触头材料应具有合适的硬度,较小的硬度在一定接触压力下可增大接触面积,减小接触电阻、降低静态接触时的触头发热和静熔焊倾向,并且可降低闭合过程中的动触头弹跳。较高的硬度可降低熔焊面积和提高抗机械磨损能力。

触头材料应具有合适的弹性模数。较高的弹性模数则容易达到塑性变形的极限值,因此表面膜容易破坏,有利于降低表面膜电阻,较低的弹性变形则可增大弹性变形的接触面积。

2、电性能:触头材料应具有较高的电导率以降低接触电阻,低的二次发射和光发射以降低电弧电流和燃弧时间。

3、热物理性质:高的热传导性,以便电弧或焦耳热源产生的热量尽快输至触头底座。高的比热容、高的熔化、气化和分解潜热。高的燃点和沸点以降低燃弧的趋势。低的蒸气压以限制电弧中的金属蒸气密度。