『壹』 第十四届华杯赛决赛试题答案

我只记得几题了.
第一题计算,六分之一.
有一题是个4乘4的正方形的,求第三行是多少,是33
还有一题是二分之一乘三分之一乘------(分母是质数的)是1到2之间
最后一题是159
(辛辛苦苦记得,给点分吧!)

『贰』 第13届华杯赛预赛决赛试题(小学组)

北京市第13届迎春杯小学数学竞赛决赛试题

1. 计算:100―÷(―0.625)×(1.6+)

2. 如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且AN=BN。那么,阴影部分的面积等于________。

3. 已知一个两位数除1477,余数是49。那么,满足那样条件的所有两位数是________。

4. 甲、乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。如果已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么,甲队每天挖________米。

5. 如图,工地上堆放了180块砖,这个砖堆有两面靠墙。如果要把这个砖堆的表面涂满白色,那么,被涂上白色的砖共有________块。

6. 下图的六条线分别连着九个О,其中一个О里的数是6。请你选九个连续自然数(包括6在内),填入О内,使每条线上各数和都等于23。

7. 在等式=2中,□表示一个数。那么,□=________。

8. 在桌面上,用6个边长为1的正三角形可以拼成一个边长为1的正六边形(如图)。如果在桌面上,要拼成一个边长为6的正六边形,那么,需要边长为1的正三角形________。

9. 李大娘把养的鸡分别关在东、西两个院内。已知东院内养鸡40只;现在把西院养鸡数的卖给商店,留给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%。原来东、西两院一共养鸡________只。

10. 有一串数:1,3,8,22,60,164,448,……其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是________。

11. 在平面上有7个点,其中每3个点都不在同一条直线上。如果在这7个点之间连结18条线段,那么这些线段最多能够成________个三角形。

12. 一个自然数除以19余9,除以23余7。那么这个自然数最小是________。

13. 六个足球队进行单循环比赛,每两对都要赛一场。如果踢平,每对各得1分,否则胜队得3分,负队得0分。现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同。已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得________分,最少可得________分。

14. 甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。甲车原来每小时行多少千米?

15. 四个足球队进行单循环比赛,每两队都要赛一场。如果踢平,每队各得1分,否则胜队得3分,负对得0分。比赛结果,各队的总得分恰好是四个连续的自然数。问:输给第一名的队的总分是多少?(要求说明理由)

『叁』 14届华罗庚金杯少年数学邀请赛决赛试题(c)小学组

第十四届华罗庚金杯少年数学邀请赛决赛试题C(小学组)

(时间:2009年4月11日10:00~11:30)

一、填空题(每小题10分,共80分)

1.计算:(1+1/2+1/4)×(1/2+1/4+1/6)-(1+1/2+1/4+1/6)×(1/2+1/4) =____________。

2.将七位数“9876543”重复写287次组成一个2009位数“98765439876543…”。删去这个数中所有位于奇数位(从左往右数)上的数字后组成一个新数;再删去新数中所有位于奇数位上的数字;按上述方法一直删除下去直到剩下一位数为止,则最后剩下的数字是___________。

3.A、B、C、D、E、F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→F,B→D,C→E,D→B,E→A,F→C。开始时,A、B、C、D、E、F拿着各自的玩具,传递完2002轮时,有___________个小朋友又拿到了自己的玩具。

4.如图1所示,图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数之和都相等,那么这个相等的和等于___________。

5.某班学生要栽一批树苗。若每个人分配k棵树苗,则剩下34棵;若每个学生分配9棵树苗,则还差3棵,那么学生共有____________人。

6.已知A、B、C是三个两两互质的合数,且A×B×C=1001×4×77,那么A+B+C的最小值为____________。

7.方格中的图形符号“◇”,“○”,“▽”,“☆”代表填入方格中的数,相同的符号表示相同的数,如图2所示,若第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37,则第三行的四个数的和为_____________。

8.已知1+2+3+……+n(n>2)的和的个位数为3,十位数为0,则n的最小值是___________。

二、解答下列各题(每题10分,共40分,要求写出简要过程)

9.六个分数1/2,1/3,1/5,1/7,1/11,1/13的和在哪两个连续自然数之间?

10.2009年的元旦是星期四,问:在2009年中,那几个月的第一天也是星期四?那几个月有5个星期日?

11.甲、乙二人分别从A、B两地同时出发相向而行,在A、B两地间往返跑步,甲每秒跑5米,乙每秒跑7米。如果他们的第四次迎面相遇地点与第一次同向相遇地点的距离是150米,求A、B两地间的距离为多少米?

12.如图3所示,图中有__________不同的三角形。

三、解答下列各题(每小题15分,共30分,要求写出详细过程)

13.如图4所示,已知在等腰△ABC中,AB=AC=25,AD与BC垂直,PE与AC垂直,PF与AB垂直,AD=24,BC=14,问PF-PE的差是否不变?若差不变,请求出这个差;若不是,请说明理由。

14.如图5所示的乘法算式中,汉字代表1至9这9个数字,不同汉字代表不同的数字。若“祝”字和“贺”字分别代表数字“4”和“8”,求出“华杯赛”所代表的整数。

『肆』 第十二届华杯赛决赛试题及解答

第二届全国“华罗庚金杯”少年数学邀请赛
初赛试题及解答
1. “华罗庚金杯”少年数学邀请赛每隔一年举行一次,1988年是第二届,问2000年是第几届?
2. 一个充气的救生圈(如图2-1),虚线所表示的大圆,半径是33厘米。实线所表示的小圆,半径是9厘米。有两只蚂蚁同时从A点出发,以同样的速度分别沿虚线大圆和实线小圆爬行。问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上爬行的蚂蚁?
3. 图2-2是一个跳棋盘,请你算算棋盘上共有多少隔棋孔?
4. 有一个四位整数,在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是2000.81。求这个四位数。
5. 图2-3是一块黑白格子布,白色大正方形的边长是14厘米,白色小正方形的边长是6厘米。问这块布中白色的面积占总面积的百分之几?

6. 图2-4是两个三位数相减的算式,每个方框代表一个数字。问:这六个方框中的数字的连乘积等于多少?
7. 图2-5中的正方形的边长是2米,四个圆的半经都是1,圆心分别是正方形的四个顶点。问这个正方形和四个圆盖住的面积是多少平方米?
8. 有七根竹竿排成一排,第一根竹竿长1米,其余每根的长都是前一根的一半。问:这七根竹竿的总长是多少米?
9. 有三条线段 , 长1.21米, 长1.71米, 长3.53米.以它们作为上底、下底和高,可以做出三个不同的梯形图2-6 , 图2-6 和图2-6 。问哪个梯形的面积对答?

10. 有一个电子钟,每走9分钟亮一次灯, 每到整点响一次铃。中午12点整,电子钟响铃又亮灯。 问:下一次下即响铃又亮灯是几点钟?

『伍』 第十五届华杯赛决赛小学组试题答案

第十五届“华杯赛”决赛真题A卷答案(小学)

填空题。

1、173

2、19

3、425

4、5

5、223,3

6、32

7、3

8、4

二、解答下列各题

9、不可以。

解:对4×5的长方形黑白间隔染色,共有10黑10白。那5个小正格硬纸板,“L”型会占2黑2白,“Z”型会占2黑2白,“田”型会占2黑2白,“1”型会占2黑2白,“土”型会占1黑3白或3黑1白,这样总共会占掉9黑11白或11黑9白,与10黑10白矛盾。所以不行。

10、28,L/72

11、至多7分,至少得5分

12、有。

解:显然16424不是质数。对于1163,依次用2、3、5、7、11、13、17、19、23、29、31去除,发现都不能整除,所以1163是质数。

13、670

14、36,24,12,15,11

『陆』 届华杯赛决赛试题15

第几届吗?怎么回答啊!
是不是这个:
第十五届华罗庚金杯少年队数学邀请赛决赛试题A(小学组)

一、填空题(每小题10分,共80分)
1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要 173 个乒乓球。
解:11+12+14+16+17+18+19+21+22+23=173

2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。一个礼品配一个包装盒,共有 19 种不同价格。
解:5x5-6=19(9、12、15、11、14、17重复)

3.汽车A从甲站出发开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。已知A、B、C的速度分别是每小时90km,80km,60km,那么甲乙两站的路程是 425 km。
解:AC相遇时,BC间距离为(90+80)x13 =1703
此时B共行进了1703 ÷(80-60)=176 小时,则AB相遇时A、B行进了176 —13 =52 小时,所以总路程为(90+80)x52 =425km

4.将12 、13 、14 、15 、16 、17 和这6个分数的平均值从小到大排列,则这个平均值排在第5位。
解:平均值为223840 ,比较可得。

5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为 223 ,这些“好数”的最大公约数是 3 。
解:“好数”实际上是对于模9同余6的数,因此在1~2012中共有(2012-5)÷9=223个
所有好数都是3的倍数,参照前2个好数6、15可得,最大公约数只能为3.

6.右图所示的立体图形由9个棱长为1的立方块搭成,这个立体图形的表面积为 32 。
解:从3个方向数出各自的面积为5+6+5=16
则6个面一共为16x2=32

7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和事33,则最多有 3 张是卡片“3”。
解:设8张全用3则3x8=24,不足33. 33-24=9
因此要用“4”或“5”来替换“3”显然尽可能多用“5”更划算
所以每用一张5可使结果增加2
所以9÷2=4??1
所以用4张5和1张4替换掉5个3,还剩下3个3是最多的情况。

8.若将算式11x2 —13x4 +15x6 —17x8 +?—12007x2008 +12009x2010 的值化为小数,则小数点后第1个数字是 4 。
解:原式的小数部分第一位是4。

二、解答下列各题(每题10分,共40分,要求写出简要过程)
9.右图中有5个由4个1x1的小正方格组成的不同形状的硬纸板。问能用这5个硬纸板拼成右图中4x5的长方形吗?如果能请画出一种拼法;如果不能请简述理由。
不可以。
解:对长方形黑白间隔染色,共有10黑10白。那5个小正格硬纸板,“L”型会占2黑2白,“Z”型会占2黑2白,“田”型会占2黑2白,“1”型会占2黑2白,“土”型会占1黑3白或3黑1白,这样总共会占掉9黑11白或11黑9白,与10黑10白矛盾。所以不行。

10.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段长是多少?
解:按红、蓝、黑线划分后的长度分别为原厂的18 、112 、118 则格局容斥原理可得:
[18 ,112 ]=14 ;[18 ,118 ]=12 ;[18 ,112 ,118 ]=12
则可知共可分38-6-4-2=26段,
最短一段:
因为(18 ,112 ,118 )=172 它们的最大公约数为172
所以最短的一段一定大于172 ,不难组合出18 第一段与118 的第二段之间可截出
18 —218 =18 —19 =172 x2
所以最短为L72
另:可设L长度为72,把分数转化为整数更简便

11.足球队A,B,C,D进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分,若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?
至多7分,至少得5分。
解:总共塞了10场,10场中有些是平局,有些是胜负局,而平局时双方只能得到2分,胜负双方能得3分。所以要想使E得分最多或最少,也就是要让总分最多或最少。
总分最多时,平局最少。A最少平1局,B最少平1局,C最少平1局,D最少平2局,由于一场平局被两支队伍算了两次,所以平局数的和必须是偶数,因此E最少平1局,所以E队最多得7分。
总分最少时,平局最多。A最多平1局,B最多平4局,C最多平1局,D最多平2局,同理平局数的和必须是偶数,因此E最多平4局,但是这样的情况是不可能达到的,因为B和E与其他四队都平的话,A、C不可能只平1局。因此E最多平2局,所以E队最多得5分。

12.华罗庚爷爷出生于1910年11月12日。将这些数字排成一个整数,并且分解成19101112=1163x16424.请问这两个数1163和16424中有质数吗?并说明理由。
有。
解:显然16424不是质数。对于1163,依次用2、3、5、7、11、13、17、19、23、29、31去除,发现都不能整除,所以1163是质数。

三、解答下列各题(每小题15分,共30分,要求写出详细过程)
13.右图中,六边形ABCDEF的面积是2010平方厘米,已知△ABC △BCD △CDE △DEF △EFA △FAB的面积都等于335平方厘米,6个阴影三角形面积之和为670平方厘米。求六边形A1B1C1D1E1F1的面积。

670

14.已知两位自然数虎威能被他的数字之积整除,求出虎威代表的两位数。

36、24、15、12
解:由题目知,两位数虎威要满足:威虎威,即??10?威虎威,也就是要 10威虎;同理,由于虎虎威,即??10?虎虎威,也就是要 虎威。有了这两个限制条件,依次进行试验:
当威=9,7,3,1时,相应的虎=9,7,3,1;但不同的汉字取相同的数字,矛盾。
当威=8时,虎=8或4,都不满足。
当威=6时,虎=6或3,试验知36是满足的。
当威=4时,虎=4或2,试验知24是满足的。。
当威=2时,虎=2或1,试验知12是满足的。
当威=5时,虎=5或1,试验知15是满足的。
综上所述,有三个满足题目的两位数,即36、12、15

『柒』 华杯赛试题

答案是12

设O点到AD的垂直距离为h1, 则三角形AOD的面积= 1/2 * AD *h1
设O点到BC的垂直距离为h2, 则三角形BOC的面积= 1/2 * BC *h2

E是OC的中点,所以三角形BOE的面积是三角形BOC的面积的1/2 = 1/2 *(1/2 * BC *h2)

三角形AOD的面积与三角形BOE的面积之和是4,也就是

1/2 * AD *h1 + 1/2 *(1/2 * BC *h2)= 4 而且BC=2AD,带入

1/2 * AD *h1 + 1/4 * 2AD * h2 =4
1/2 * AD * (h1+h2) = 4

h1 +h2 正好是梯形的高的距离,设为h,上边的式子为 1/2 * AD * h = 4

=====> AD*h=8

梯形ABCD面积= 1/2 * (AD+BC)*h=1/2 * (AD+2AD)*h=1/2 * 3AD*h=1/2 * 3* 8= 12

『捌』 15届华杯赛决赛试题

boiuABOCSD

『玖』 第十六届华杯赛决赛试题及答案

1. 任何四个连续自然数之和一定被4除余2,所以只有102满足条件。
“都为合数”这个条件可以被无视了。
C

2. 容易发现,如果原数字有n根火柴,则对应数字7-n。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,
包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
C

3. 这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,
即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,
所以差为6/49。
D

4. 任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果
有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,
那么张说的是真话,矛盾。
B

5. 看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;
看蚂蚁所在的行,可知应该在中间一行,所以是N。
B

6. 增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,
增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为
3/2,增加了1/2,所以原定时间是5/6×2=5/3(小时)。
A

7. 如图所示,有8个。画出其中的两个,其余的完全对称。
8

8. 相遇后,甲还需要3小时返回甲地。第二次相遇时,甲距离相遇点的
距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比
为7:5。甲乙相遇需要3小时,那么乙单独到需要180×12÷5=432分钟。
432

9. 易知夹在平行线之间的△ABM和△EFM面积相等,△CDN和△EFN面积相等。
而△EFM和△EFN的面积之和等于EF×(MO+ON)÷2=26,所以空白部分的面积
总和为52,所求答案为65。
65

10. 显然华=1。
总共有9个数字,也就是说0到9中有一个不能用,根据弃九法,5不能用。
每进一位数字和减少9,0+1+2+3+4+6+7+8+9-(2+0+1+1)=36,所以共进4位。
所以个位和十位之一需要进两位,有两种可能:
(1)个位数字之和为11,十位数字之和为20,百位数字之和为8;
(2)个位数字之和为21,十位数字之和为9,百位数字之和为9。
为了让“华杯初赛”尽量大,“杯”应尽量大,“十”应尽量小。
“十”最少为2,优先考虑情况(2),此时“杯”可以等于7。
剩余数字0,3,4,6,8,9,个位和为21的显然是4+8+9,
十位和为9的剩下0+3+6,所以最大为17不必再考虑(1)了。
1769 69。

『拾』 第16届华杯赛决赛试题及答案

一、填空题(每小题10分,共80分)
1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要 173 个乒乓球。
解:11+12+14+16+17+18+19+21+22+23=173
2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。一个礼品配一个包装盒,共有 19 种不同价格。
解:5x5-6=19(9、12、15、11、14、17重复)
3.汽车A从甲站出发开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。已知A、B、C的速度分别是每小时90km,80km,60km,那么甲乙两站的路程是 425 km。
解:AC相遇时,BC间距离为(90+80)x13 =1703
此时B共行进了1703 ÷(80-60)=176 小时,则AB相遇时A、B行进了176 —13 =52 小时,所以总路程为(90+80)x52 =425km
4.将12 、13 、14 、15 、16 、17 和这6个分数的平均值从小到大排列,则这个平均值排在第5位。
解:平均值为223840 ,比较可得。
5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为 223 ,这些“好数”的最大公约数是 3 。
解:“好数”实际上是对于模9同余6的数,因此在1~2012中共有(2012-5)÷9=223个
所有好数都是3的倍数,参照前2个好数6、15可得,最大公约数只能为3.
6.右图所示的立体图形由9个棱长为1的立方块搭成,这个立体图形的表面积为 32 。
解:从3个方向数出各自的面积为5+6+5=16
则6个面一共为16x2=32
7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和事33,则最多有 3 张是卡片“3”。
解:设8张全用3则3x8=24,不足33. 33-24=9
因此要用“4”或“5”来替换“3”显然尽可能多用“5”更划算
所以每用一张5可使结果增加2
所以9÷2=4??1
所以用4张5和1张4替换掉5个3,还剩下3个3是最多的情况。
8.若将算式11x2 —13x4 +15x6 —17x8 +?—12007x2008 +12009x2010 的值化为小数,则小数点后第1个数字是 4 。
解:即原式的小数部分第一位是4。
二、解答下列各题(每题10分,共40分,要求写出简要过程)
9.右图中有5个由4个1x1的小正方格组成的不同形状的硬纸板。问能用这5个硬纸板拼成右图中4x5的长方形吗?如果能请画出一种拼法;如果不能请简述理由。
不可以。
解:对长方形黑白间隔染色,共有10黑10白。那5个小正格硬纸板,“L”型会占2黑2白,“Z”型会占2黑2白,“田”型会占2黑2白,“1”型会占2黑2白,“土”型会占1黑3白或3黑1白,这样总共会占掉9黑11白或11黑9白,与10黑10白矛盾。所以不行。
10.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段长是多少?
解:按红、蓝、黑线划分后的长度分别为原厂的18 、112 、118 则格局容斥原理可得:
[18 ,112 ]=14 ;[18 ,118 ]=12 ;[18 ,112 ,118 ]=12
则可知共可分38-6-4-2=26段,
最短一段:
因为(18 ,112 ,118 )=172 它们的最大公约数为172
所以最短的一段一定大于172 ,不难组合出18 第一段与118 的第二段之间可截出
18 —218 =18 —19 =172 x2
所以最短为L72
另:可设L长度为72,把分数转化为整数更简便
11.足球队A,B,C,D进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分,若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?
至多7分,至少得5分。
解:总共塞了10场,10场中有些是平局,有些是胜负局,而平局时双方只能得到2分,胜负双方能得3分。所以要想使E得分最多或最少,也就是要让总分最多或最少。
总分最多时,平局最少。A最少平1局,B最少平1局,C最少平1局,D最少平2局,由于一场平局被两支队伍算了两次,所以平局数的和必须是偶数,因此E最少平1局,所以E队最多得7分。
总分最少时,平局最多。A最多平1局,B最多平4局,C最多平1局,D最多平2局,同理平局数的和必须是偶数,因此E最多平4局,但是这样的情况是不可能达到的,因为B和E与其他四队都平的话,A、C不可能只平1局。因此E最多平2局,所以E队最多得5分。

12.华罗庚爷爷出生于1910年11月12日。将这些数字排成一个整数,并且分解成19101112=1163x16424.请问这两个数1163和16424中有质数吗?并说明理由。
有。
解:显然16424不是质数。对于1163,依次用2、3、5、7、11、13、17、19、23、29、31去除,发现都不能整除,所以1163是质数。
三、解答下列各题(每小题15分,共30分,要求写出详细过程)
13.右图中,六边形ABCDEF的面积是2010平方厘米,已知△ABC △BCD △CDE △DEF △EFA △FAB的面积都等于335平方厘米,6个阴影三角形面积之和为670平方厘米。求六边形A1B1C1D1E1F1的面积。
670
14.已知两位自然数虎威能被他的数字之积整除,求出虎威代表的两位数。
36、24、15、12
解:由题目知,两位数虎威要满足:威虎威,即??10?威虎威,也就是要 10威虎;同理,由于虎虎威,即??10?虎虎威,也就是要 虎威。有了这两个限制条件,依次进行试验:
当威=9,7,3,1时,相应的虎=9,7,3,1;但不同的汉字取相同的数字,矛盾。
当威=8时,虎=8或4,都不满足。
当威=6时,虎=6或3,试验知36是满足的。
当威=4时,虎=4或2,试验知24是满足的。。
当威=2时,虎=2或1,试验知12是满足的。
当威=5时,虎=5或1,试验知15是满足的。
综上所述,有三个满足题目的两位数,即36、12、15、24、11