奥数冠军鹏
❶ 中国奥数十分厉害,为何却很少出现顶尖的数学家
首先在我看来,这句话是完全正确的。
我们先来看看我国参加国际奥数比赛(IMO)的战绩,你就会觉得中国队完全可以称得上是梦之队。
教育从来都不是急功近利的事情,虽然因材施教基本上不可能实现,但是兴趣永远都是最重要的老师。如果仅仅是把奥数当作升学的踏板,全然不顾孩子到底需要什么。为什么我们现在熟知的数学大家基本上都是民国时代,或者在改革开放之前。那个时候的人们真的能耐得住枯燥,孤独的学术研究,现在的人们太难做到了!
如果我国对待数学的态度始终如此,那么中国永远都不会有出色的数学家,更不要说是像高斯,欧拉那样的宗师级别的数学家了。
❷ 奥数世界第一名是谁
美21年来首夺冠“奥数” 第一名通常是中国
第56届国际奥林匹克数学竞赛于
7月4日至16日在泰国清迈举行。
根据奥数竞赛官网公布的竞赛结果,
美国夺得冠军,中国和韩国分获第二和第三名。
❸ 多年奥数冠军,为什么现今中国没有一个数学家
从提问看,楼主是一个奥数无用论者,心中已有答案,只是在此寻找认同。内
我认容为,奥数有用无用,是因人而异因事而别。
而且参加奥数比赛者,不一定为了当数学家,或许只是为了兴趣。
其实,不是多年奥数冠军,也不一定能成为数学家。
至于楼主说现今中国没有数学家,结论的依据是什么?希望楼主补充问题,说来听听。
❹ 这次I奥数大赛中,中国六名参赛选手表现不俗,他们分别有怎样的学习经历
近来大热的奥数竞赛,中国队再次夺冠的热度越来越高,其中中国队的参赛选手也受到高度的关注。这6名选手分别是,袁祉祯,谢柏庭,胡苏麟,邓明扬,俞然枫,黄嘉俊。其中前两位选手拿到了满分的成绩。根据国家的规定,国际奥林国家队的选手可以保送,而原祉祯确定被保送到清华。
胡苏麟,他不像前几位那样参加过很多竞赛,很多训练,他只是喜欢专题,会锲而不舍的研究,一反三。不禁令我们自己汗颜,我们是否在学习的时候不注重量而注重质
俞然枫,他高一的时候,就进入了奥数国家的集训队,也是从小就参加各种比赛,获得各种名次。
其实真正能让他们取得今天成绩的,并不是多么傲人的天赋,而是自身的刻苦训练百分之3的天数,97%的汗水,才练就了今天的中国冠军。
这6位小天才无疑给中国所有的青少年做了一个榜样,给无数热爱数学的人打了一个强心剂。付出就会有收获这句话又得到了验证。
❺ 初中生全国数学奥数冠军可以上大学吗
初中还远了点吧。
有这个实力,以后好好学习,通过高考上大学吧。
初中太早了点,直接上大学恐怕不太合适吧。
❻ 两届奥数冠军缘何坠落
其次,他表达了对该报道所传递价值观的不理解。
付云皓认为,该文章的作者笔下传递的观点是:优秀的人从事基础工作,就是一件很可耻的事情。“得过IMO冠军的人,如果不出意外,他们的征途就一定是高等数学的星辰大海,而不是给一群‘二本师范生’教初中数学知识,如果成了付云皓这种去给‘二本师范生’讲课的人,那就是天才坠落了。”
细读《奥数天才坠落之后》,文中有这样一句话:“教育方向的硕士也意味着,付云皓可能从此都和学术研究无缘了。”在付云皓看来,这似乎暗含着一种专业歧视,教育方向和学术研究是两条平行线,似乎优秀的研究者都不能从教师中产生,当了教师就没办法做研究了?而文章开头还有一句话,让付云皓抱歉于让学生跟着他一起“被小小黑了一下”:“以培养小学老师为目标的二本师范学校,正在讲授的初中数学内容对学生来说似乎有点太难了,而这些是付云皓在小学就轻松掌握的知识。”
付云皓提到,自己在采访中甚至提出了张益唐先生的例子来提点作者,并同时提到了,有许多研究者学术能力很强,却始终棋差一招,终其一生也没能攻克想攻克的问题,但他们依然是快乐的,充实的。“作者虽然没有忽略掉这一段,在文章的最后略微提及,但可能在他的眼里,我举这个例子,就是为了在采访者面前平衡一下自己从天才冠军到‘二本师范’学校老师的心里落差吧。”
《奥数天才坠落之后》的结尾处是这样写的:“刚和记者见面时,付云皓就迫不及待地抛出了张益唐的名字。张益唐在赛百味打工,出人意料地破解了孪生素数的猜想,轰动了沉寂许久的数学界。付云皓说,有一天他也想像张益唐一样,潜心闭关数月,做出个至少对得起自己的学术成果。像是对18岁的自己的一个交代,也像是为了抚慰心里那座喷薄的火山……”
“对于天才无感,却被你现在的脚踏实地感动。”
“比起做大事,脚踏实地更重要。仰望过星空的人,更能脚踏实地。不被别人的节奏所乱,勿忘初心已经是很难得了!”
“虽然不认识你,但是我觉得每个人都有自己的价值追求,自己找到了自己舒服的状态去生活,去做科研都是非常好的事情。如今的社会太经济了,几乎变成了以经济来衡量成功,以成功来定位一个人,个人认为有很多东西比经济、成功都重要,家人的陪伴、子女的教育、对生活的爱与追求。”
当然,还有人“爆料”,这位实习记者是2014年江苏高考理科状元,还曾经获得过新概念作文大赛一等奖,一度想要报考北大新闻系,却被纷至沓来的记者“劝退”,最后报考了光华管理学院。
付云皓现在的生活究竟是“坠落”还是“脚踏实地”,人们观点各异。如付云皓所说,他现在之所以安于一方讲台,没有什么星辰大海,没有太多高远的学术理想的宣扬,是因为他只想尽自己的力量,让初等教育越来越专业化越来越有水平,提高师范生的教学能力让尽量多的孩子受到正确的引导。“任何志存高远的学术理想,都是干出来的,而不是想当然想出来的,只有脚踏实地,才能撸起袖子加油干,为这个社会,这个国家贡献自己的一份力量。”
❼ 为什么日本从没有获得过奥数冠军 却有那么多菲尔兹奖
国际奥数最开始是东欧社会主义国家1959年举行的,美国参赛是1974年,日本最后一个菲尔兹奖是森重文,他出生于1951年,其他日本菲尔兹奖是出生于1915年的小平邦彦,1931年广中平祐,这两位大学前连国际奥赛都没有,森重文那时估计日本都没有参赛
❽ 天才 奥数冠军的故事
我找的不全是奥数冠军的故事,但都是数学名家的故事.
刘徽
中国魏晋间伟大的数学家,中国古典数学理论的奠基者之一.刘徽公元263年注 《九章算术》.他全面证明了《九章算术》的方法和公式,指出并纠正了其中的错误,在数学方法和数学理论上作出了杰出的贡献.刘徽创造性的运用极限思想证明了圆面积公式及提出了计算圆周率的方法.
他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位.
刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上.虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系.
祖冲之
祖冲之(429-500) 南朝宋齐间科学家,字文远,范阳遒(今河北涞水)人。博学多才,尤其对天文、数学有相当高的造诣。他广泛搜集、阅读关于天文、数学方面的书籍、文献。经常“亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策”,进行精确的测量和仔细的推算。通过艰苦的努力,他在世界数学史上第一次将圆周率(Л)值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”。他将自己的数学研究和成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闰月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。他重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失。
华罗庚
华罗庚(1910~1985),数学家,中国科学院院士。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、大大团成员,中国科学技术大学数学系主任、副校长,中国科协副大大,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副大大。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。
最伟大的三位(或四位)数学家
高斯
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时—虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。
为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
高斯的学术地位,历来为人们推崇得很高。他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18—19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年丹麦政府任命他为科学顾问,德国汉诺威政府也聘请他担任政府科学顾问。
高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。
牛顿
伊萨克·牛顿,于1642年的圣诞节出生于英格兰林肯州活尔斯索浦。父亲在他出生前3个月就去世了,母亲改嫁后 他只得由外祖母和舅舅抚养。幼年的牛顿,学习平平,但却非常喜欢手工制作。同时他还对绘画有着非凡的才华。
牛顿12岁开始上中学,这时他的爱好由手工制作发展到爱搞机械小制作。他从小制作中体会到学好功课,特别是学好数学,对动手搞好制作大有益处。于是牛顿在学习加倍努力,成绩大进。
牛顿15岁时,由于家庭原因,被迫辍学务农。非常渴求知识的牛顿,仍然抓紧一切时间学习、苦读。牛顿这种勤奋好学的精神感动了牛顿的舅舅。终于在舅舅的资助之下又回到学校复读。
1661年,19岁的牛顿,考入了著名的剑桥大学。在学习期间,牛顿的第一任教授伊萨克?巴鲁独具慧眼,发现了牛顿具有深邃的观察力、敏锐的理解力,于是将自己掌握的数学知识传授给了牛顿,并把他引向近代自然科学的研究。1664年经考试牛顿选为巴鲁的助手。1665年,牛顿大学毕业,获得学士学位。正准备留校继续深造的时候,严重的鼠疫席卷英国,剑桥大学被迫关闭了。牛顿两次回到故乡避灾,而这恰恰是牛顿一生中最重要的转折点。牛顿在家乡安静的环境里,专心致志地思考数学、物理学和天文学问题,思想火山积聚多年的活力,终于爆发了,智慧的洪流,滚滚奔腾。短短的18个月,他就孕育成形了:流数术(微积分)、万有引力定律和光学分析的基本思想。牛顿于1684年通过计算彻底解决了1666年发现的万有引力。1687年,他45岁时完成了人类科学史上少有科学巨著《自然哲学的数学原理》,继承了开普勒、伽里略,用数学方法建立起完整的经典力学体系,轰动了全世界。
牛顿的数学贡献,最突出的有三项,即做为特殊形式的微积分的“流数术”,二项式定理及“广义的算术”(代数学)。
牛顿为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿在1665年5月20日的一份手稿中提到“流数术”,因此牛顿始创微积分的时间来说比现代微积分的创始人德国的数学家莱布尼茨大约早10年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚。事实上,他们二人是各自独立地建立了微积分。只不过牛顿的“流数术”还存在着一些缺陷。
牛顿开始对二项式的研究是在从剑桥大学回故乡避鼠疫的前夕。他在前人瓦里士的基础上进一步明确了负指数的含义。牛顿研究得出的二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。
欧拉
欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯曾说:"研究欧拉的著作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 〔欧拉还创设了许多数学符号,例如π(1736年),I(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。著有《砂粒计算》、《圆的度量》、《球与圆柱》、《抛物线求积法》、《论螺线》、《平面的平衡》、《浮体》、《论锥型体与球型体》等。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
❾ 世界奥数冠军的奖金是多少
没有奖金的。
❿ 时隔四年,中国再一次拿奥数大赛冠军,这对基础教育来讲有什么意义吗
中国队时隔4年再次拿到国际奥数大赛的冠军,对于基础教育来说,无疑是一种肯定。
中国的教育常常被中国学生所诟病,觉得太死板太苛刻,不如外国的那么灵活,那么自由。可是各有各的长处,各有各的短处,中国的教育,比较注重学生的成绩,这就导致了中国很多家长评判孩子是否成功的标准就是成绩是否名列前茅,反而忽略了对兴趣的培养,但是近年来中国越来越重视德智体美劳的全面发展,也知道了,强制性的学习,并不能达到一个很好的效果。需要兴趣,加浓厚的学习氛围加孩子自己的刻苦努力才能造就一个很好的成绩。
我国也越来越注重教育,大多数的人都可以接受九年义务教育,都具有基本的辨别是非的能力和学习能力,我觉得接下来就是思维的教育。先打好铺垫,在向外扩展。希望我国的青少年可以在一片天空下自由的成长。